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Pore Fluid Effects on Shear Modulus in a Model of
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To provide quantitative measures of the importance of fluid effects on shear waves in hetero-
geneous reservoirs, a model material called a “random polycrystal of porous laminates” is intro-
duced. This model poroelastic material has constituent grains that are layered (or laminated),
and each layer is an isotropic, microhomogeneous porous medium. All grains are composed of
exactly the same porous constituents, and have the same relative volume fractions. The order of
lamination is not important because the up-scaling method used to determine the transversely
isotropic (hexagonal) properties of the grains is Backus averaging, which — for quasi-static
or long-wavelength behavior — depends only on the volume fractions and layer properties.
Grains are then jumbled together totally at random, filling all space, and producing an overall
isotropic poroelastic medium. The poroelastic behavior of this medium is then analyzed using
the Peselnick-Meister-Watt bounds (of Hashin-Shtrikman type). We study the dependence of
the shear modulus on pore fluid properties and determine the range of behavior to be expected.
In particular we compare and contrast these results to those anticipated from Gassmann’s fluid
substitution formulas, and to the predictions of Mavko and Jizba for very low porosity rocks
with flat cracks. This approach also permits the study of arbitrary numbers of constituents,
but for simplicity the numerical examples are restricted here to just two constituents. This
restriction also permits the use of some special exact results available for computing the over-
all effective stress coefficient in any two-component porous medium. The bounds making use
of polycrystalline microstructure are very tight. Results for the shear modulus demonstrate
that the ratio of compliance differences R (i.e., shear compliance changes over bulk compliance
changes when going from drained to undrained behavior, or vice versa) is usually nonzero and
can take a wide range of values, both above and below the value R = 4/15 valid for low poros-
ity, very low aspect ratio flat cracks. Results show the overall shear modulus in this model can
depend relatively strongly on mechanical properties of the pore fluids, sometimes (but rarely)
more strongly than the dependence of the overall bulk modulus on the fluids.

PACS numbers: 46.25.Cc,46.65.+g,43.20.Bi,02.50.Fz

I. INTRODUCTION

Heterogeneity of the earth plays a significant role in
determining geomechanical and geophysical coefficients
such as the bulk and shear moduli and the elastic and/or
poroelastic wave speeds. The heterogeneities of impor-
tance may be due to fine layering [Postma, 1955; Backus,
1962] (layers being thin compared to seismic wavelength),
due to partial or patchy saturation of pore fluids [White,
1975; Knight and Nolen-Hoeksema, 1990; Dvorkin et al.,
1999; Johnson, 2001; Li et al., 2001], due to random po-
sitioning of joints and fractures [Berryman and Wang,
1995; Pride and Berryman, 2003; Pride et al., 2004], due
to anisotropic stress distribution, etc. There have been
many attempts to attack all of these problems, and the
up-scaling methods employed have ranged from ad hoc to
mathematically rigorous, and have had varying degrees
of success in modeling field and laboratory data.

∗berryman1@llnl.gov

One of the main purposes of the present paper is there-
fore to introduce a semi-analytical model of the earth,
and especially of fluid-bearing rocks, reservoirs, and/or
soils, that provides well-controlled estimates of the prop-
erties of most interest such as elastic/poroelastic con-
stants, electrical and/or thermal conductivity, etc. The
concept is based on “random polycrystals of porous lam-
inates.” Locally layered regions are treated as laminates
and the poroelastic and other coefficients for local re-
gions can be computed essentially exactly using Backus
[1962] averaging for poroelastic constants (and similar
methods for other parameters), in the long-wavelength
or quasi-static limits. Then, since such layered materi-
als are typically anisotropic (having hexagonal symmetry
when the layers are isotropic), we assume that the earth
is composed of a statistically isotropic jumble of such lay-
ered regions. The locally layered, anisotropic regions may
be termed “grains” or “crystals.” A schematic diagram
of this type of microstructure can be found in Berryman
[2005]. (Although the choice of language used to describe
the model may seem more appropriate for rocks than for
reservoirs or soils, we can take advantage of fact that the
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elastic and poroelastic coefficients are almost all scale in-
variant physical properties so the basic physical picture
presented works at all scales. The only exception is for
results concerning fluid permeability, which is definitely
not scale invariant, but therefore also excluded from con-
sideration here.) Then, the overall behavior of this sys-
tem can be determined/estimated using another method
from the theory of composites: the well-known Hashin-
Shtrikman bounds [Hashin and Shtrikman, 1962b]. In
this case the bounds of interest for the types of crystal
symmetry that arise are those first obtained by Pesel-
nick and Meister [1965] and later refined by Watt and
Peselnick [1980]. These bounds have been refined fur-
ther recently by the author [Berryman, 2004b; 2005]. In
particular, these latest refinements provide sufficient in-
sight into the resulting equations that self-consistent esti-
mates (lying between the rigorous bounds) of the elastic
constants can be formulated and very easily computed.
We find that the Peselnick-Meister-Watt upper and lower
bounds are already quite close together for this model
material, so the resulting self-consistent estimates are
very well constrained. The bounds then serve as error
bars on the self-consistent model estimates.

Although the model being proposed has several of the
key features of real rocks, reservoirs, and/or granular me-
dia such as soils, it is neither a claim of this presenta-
tion nor an intent of this work that the model should
be viewed as anything more than a caricature of these
complicated media. In this regard, the model follows in
the long-established tradition of effective medium theo-
ries [Maxwell, 1873; Einstein, 1906; Bruggeman, 1937]
— see review by Berryman [1995] — none of which when
initially proposed was viewed as anything more than such
a caricature; but nevertheless these models permitted
inclusion of desired features and enabled calculation of
useful estimates. It was only many years after the intro-
duction of these effective medium theories that bounding
methods were developed [Hill, 1952; Hashin and Shtrik-
man, 1962a,b], and then still later when it was shown
that there was a realizable microstructure implicit in
some of these effective medium theories so that their
predictions would necessarily always lie inside the rig-
orous bounds [Milton, 1985; Norris, 1985; Avellaneda,
1987]. The alternative approach we are developing here
uses instead a new prototype for effective medium theo-
ries: We start with a realizable microstructure; then we
compute the rigorous bounds; finally, we construct an
effective medium estimate that is consistent with those
bounds. This direct approach seems likely to be very ad-
vantageous in many situations both for scientific and for
engineering design purposes.

The method being introduced can be applied to a wide
variety of difficult technical issues concerning poroelas-
ticity of rocks and/or geomechanical coefficients of reser-
voirs and soils. The one issue that will be addressed at
length here is the question of how shear moduli in fully
saturated, partially saturated, and/or patchy saturated
porous rock or soil may or may not depend on mechanical

properties of the pore fluids. The well-known fluid substi-
tution formulas of Gassmann [1951] (also see Berryman
[1999]) show that — for isotropic, microhomogeneous
(single solid constituent) porous media — the undrained
bulk modulus depends strongly on a pore-liquid’s bulk
modulus, but — in sharp contrast — the undrained shear
modulus is not at all affected by changes in the pore-
liquid modulus. Since the system we are considering vi-
olates Gassmann’s microhomogeneity constraint as well
as the the isotropy constraint in the vicinity of layer in-
terfaces, we expect that the shear modulus will in fact
depend on the fluid properties in this model [Mavko and
Jizba, 1991; Berryman and Wang, 2001; Berryman et al.,
2002b]. The semi-analytical model presented here allows
us to explore this issue in some detail, to show that over-
all shear modulus does depend on pore-fluid mechanical
properties, and to quantify these effects.

The next section introduces the basic tools used later
in the layer analysis. The third section reviews the
Peselnick-Meister-Watt bounds and presents the new for-
mulation of them. The fourth section summarizes the
results needed from poroelastic analysis. The fifth sec-
tion presents the main new results of the paper, including
four distinct scenarios that help to elucidate the behav-
ior of the overall shear modulus and contrast it to that
of the bulk modulus. The final section summarizes our
conclusions. Appendix A provides a brief proof of one
of the results used in the text concerning the behavior
of the effective stress coefficient for patchy saturation.
Appendix B shows that Hill’s equation [Hill, 1963; 1964]
should be used cautiously in analysis of heterogeneous
rocks, reservoirs, and soils.

II. ELASTICITY OF LAYERED MATERIALS

We assume that a typical building block of the random
system is a small grain of laminate material whose elas-
tic response for such a transversely isotropic (hexagonal)
system can be described locally by:
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, (1)

where σij are the usual stress components for i, j = 1−3
in Cartesian coordinates, with 3 (or z) being the axis
of symmetry (the lamination direction for such a lay-
ered material). Displacement ui is then related to strain
component eij by eij = (∂ui/∂xj + ∂uj/∂xi)/2. This
choice of definition introduces some convenient factors of
two into the 44, 55, 66 components of the stiffness matrix
shown in (1).

For definiteness we also assume that this stiffness ma-
trix in (1) arises from the lamination of N isotropic con-
stituents having bulk and shear moduli Kn, µn, in the
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N > 1 layers present in each building block. It is im-
portant that the thicknesses dn always be in the same
proportion in each of these laminated blocks, so that
for each n, fn = dn/

∑

n′ dn′ is the same constant for
each grain. But the order in which layers were added to
the blocks in unimportant, as Backus’s formulas [Backus,
1962] for the constants show. For the overall behavior
for the quasistatic (long wavelength) behavior of the sys-
tem we are studying, Backus’s results (also see Postma
[1955], Berryman [1998], Milton [2002], Berryman et al.
[2002a,b]) state that

c33 =
〈

1
K+4µ/3

〉−1

, c13 = c33

〈

K−2µ/3
K+4µ/3

〉

,

c44 =
〈

1
µ

〉−1

, c66 = 〈µ〉 ,

c11 =
c2

13

c33
+ 4c66 − 4

〈

µ2

K+4µ/3

〉

, c12 = c11 − 2c66.

(2)
This bracket notation can be correctly viewed: (a) as a
volume average, (b) as a line integral along the symmetry
axis x3, or (c) as a weighted summation 〈Q〉 =

∑

n fnQn

over any relevant physical quantity Q taking a constant
value Qn in the n-th layer. (Note: The assumed unifor-
mity of the crystalline grains is not an absolute require-
ment of the theoretical approach. Formulas can also be
developed for mixtures of different types of grains, but
the present restriction does simplify the formulas and
captures one essential part of the complexity of the over-
all heterogeneity of these systems.)

The bulk modulus for each laminated grain is that
given by the Reuss average KR of the corresponding com-
pliance matrix sij [the inverse of the usual stiffness ma-
trix cij , whose nonzero components are shown in (1)].
The well-known result is e = e11 + e22 + e33 = σ/Keff ,
where 1/Keff = 1/KR = 2s11 + 2s12 + 4s13 + s33. When
µn = µ is constant in a layered grain, the definition of KR

implies Hill’s equation [Hill, 1963; 1964; Milton, 2002],
which is given by

K∗ =

[

N
∑

n=1

fn

Kn + 4µ/3

]−1

− 4µ/3. (3)

Here the bulk modulus of the n-th constituent is Kn,
the shear modulus takes the same value µn = µ for all
n = 1, . . . , N , and the overall effective bulk modulus is
K∗. The volume fractions fn are all nonnegative, and
sum to unity.

Even though Keff = KR is the same for every grain,
since the grains themselves are not isotropic, the over-
all bulk modulus K∗ of the random polycrystal does not
necessarily have the same value as KR for the individual
grains [Hill, 1952]. Hashin-Shtrikman bounds on K∗ for
random polycrystals whose grains have hexagonal sym-
metry [Peselnick and Meister, 1965; Watt and Peselnick,
1980]. show in fact that the KR value lies outside the
bounds in many situations [Berryman, 2004b].

III. BOUNDS ON ELASTIC CONSTANTS FOR

RANDOM POLYCRYSTALS

A. Voigt and Reuss Bounds

For hexagonal symmetry, the nonzero stiffness con-
stants are: c11, c12, c13 = c23, c33, c44 = c55, and
c66 = (c11 − c12)/2.

The Voigt [1928] average for bulk modulus of hexagonal
systems is well-known to be

KV = [2(c11 + c12) + 4c13 + c33] /9. (4)

Similarly, for the shear modulus we have

µV =
1

5
(Gv

eff + 2c44 + 2c66) , (5)

where the new term appearing here is essentially defined
by (5) and given explicitly by

Gv
eff = (c11 + c33 − 2c13 − c66)/3. (6)

When a pure uniaxial strain (stress) of magnitude 3 is ap-
plied along the symmetry axis of the hexagonal system,
it can be decomposed into a pure compression and a pure
shear component: (0, 0, 3)T = (1, 1, 1)T −(1, 1,−2)T . For
brevity of notation, we call this shear component of such
a uniaxial strain (stress) the “uniaxial shear” compo-
nent [Berryman, 2004a,b]. Then, the quantity Gv

eff is
the energy per unit volume in a grain when a pure uni-
axial shear strain of unit magnitude [i.e., (e11, e22, e33) =

(1, 1,−2)/
√

6] is applied.
The Reuss [1929] average KR for bulk modulus can

also be written in terms of stiffness coefficients as

1

KR − c13
=

1

c11 − c66 − c13
+

1

c33 − c13
. (7)

The Reuss average for shear is

µR =

[

1

5

(

1

Gr
eff

+
2

c44
+

2

c66

)]−1

, (8)

which again may be taken as the definition of Gr
eff – i.e.,

the energy per unit volume in a grain when a pure uniax-
ial shear stress of unit magnitude [i.e., (σ11, σ22, σ33) =

(1, 1,−2)/
√

6], whose main compressive pressure is ap-
plied to a grain along its axis of symmetry.

For each grain having hexagonal symmetry, two prod-
uct formulas hold [Berryman, 2004a]: 3KRGv

eff =
3KV Gr

eff = ω+ω−/2 = c33(c11 − c66) − c2
13. The symbols

ω± stand for the quasi-compressional and quasi-uniaxial-
shear eigenvalues for the “crystalline grains.” Thus, it
follows that

Gr
eff = KRGv

eff/KV (9)

is a general formula, valid for hexagonal symmetry. We
can choose to treat (5) and (8) as the fundamental defin-
ing equations for Gv

eff and Gr
eff , respectively. Equiva-

lently, we can use (9) as the definition of Gr
eff .
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B. Hashin-Shtrikman Bounds

It has been shown elsewhere [Berryman, 2004b; 2005]
that the Peselnick-Meister-Watt bounds for bulk modu-
lus of a random polycrystal composed of hexagonal (or
transversely isotropic) grains are given by

K±

PM =
KV (Gr

eff + ζ±)

(Gv
eff + ζ±)

=
KRGv

eff + KV ζ±
Gv

eff + ζ±
, (10)

where Gv
eff (Gr

eff) is the uniaxial shear energy per unit
volume for a unit applied shear strain (stress). The sec-
ond equality follows directly from the product formula
(9). Parameters ζ± are defined by

ζ± =
G±

6

(

9K± + 8G±

K± + 2G±

)

. (11)

In (11), values of G± (shear moduli of isotropic compar-
ison materials) are determined by inequalities

0 ≤ G− ≤ min(c44, G
r
eff , c66), (12)

and

max(c44, G
v
eff , c66) ≤ G+ ≤ ∞. (13)

The values of K± (bulk moduli of isotropic comparison
materials) are then determined by equalities

K± =
KV (Gr

eff − G±)

(Gv
eff − G±)

, (14)

given by Peselnick and Meister [1965] and Watt and Pe-
selnick [1980]. Also see Berryman [2004b].

Bounds on the shear moduli are then given by

1
µ±

hex
+ζ±

= 1
5

[ 1−γ±(KV −K±)
Gv

eff
+ζ±+δ±(KV −K±)

+ 2
c44+ζ±

+ 2
c66+ζ±

]

,
(15)

where γ± and δ± are given by

γ± =
−1

K± + 4G±/3
and δ± =

[

4

15
− 2

5G±γ±

]−1

.

(16)
The constant KV appearing in (15) is again the Voigt
average of the bulk modulus as defined previously.

IV. POROELASTICITY ESTIMATES AND

BOUNDS

Our main focus here will be the extension of earlier
work in elasticity to the case of locally layered poroelastic
media [Wang, 2000; Coussy, 2004], where the laminated
grains (or crystals) are formed by sequential layering of
N porous isotropic layers. Although these grains each
have the same quasi-static anisotropic elastic behavior,

they do not necessarily have the same shapes, and def-
initely do not have the same orientations of their crys-
tal symmetry axes. Specifically, we want to study the
case of isotropic random polycrystals, wherein the indi-
vidual grains can and do take on all possible orientations
of their symmetry axes (equiaxed, statistically isotropic
polycrystals) so that the overall composite polycrystal
has isotropic behavior at the macroscopic level. Further-
more, in some applications, the pores of some grain layers
may be filled with different fluids (heterogeneous satura-
tion conditions) than those in other layers. This model
may or may not be a realistic one for any given fluid-
bearing rock, reservoir, or soil, whose geomechanics we
need to model. But, the model captures two key fea-
tures: local layering and overall isotropy (and without
the unphysical requirement of uniform shear modulus).

Our first goal is to arrive at a model for which many
of the available modern tools of elastic and poroelas-
tic analysis apply, including Hashin-Shtrikman bounds
for a reservoir having isotropic constituents [Hashin and
Shtrikman, 1962a,b,c; 1963a,b], Peselnick-Meister-Watt
bounds for random polycrystals [Peselnick and Meis-
ter, 1965; Watt and Peselnick, 1980], certain exact re-
lationships known for two-component poroelastic media
[Berryman and Milton, 1991], and — whenever appropri-
ate — self-consistent or other effective medium estimates
of both elastic constants and conductivities (electrical,
thermal, and possibly – with some extra care in restrict-
ing the model choices — hydraulic). By constructing
such a model material, we expect to be able to make es-
timates of the behavior of the system and at the same
time be able to predict the range of variation likely to
be observed around these estimates, as well as identify-
ing what material and microgeometry properties control
those variations. Our further goal is to be able to make
fairly precise statements about this model that are then
useful to our intuition and to quantify how much is really
known about these complex systems. In particular, the
hope is to identify assumptions currently and commonly
used in the literature without much apparent justification
and to provide a means of either verifying or falsifying
these assumptions in the context of this model — if that
proves to be possible.

Two distinct results that will be required from poroe-
lasticity theory are: (a) Gassmann’s equations and (b)
certain relationships that determine the overall effec-
tive stress coefficient of a composite poroelastic medium
when it is composed of two porous materials satis-
fying Gassmann’s assumptions. Gassmann’s results
[Gassmann, 1951; Berryman, 1999; Wang, 2000] for the
undrained bulk (K) and shear (µ) moduli of microhomo-
geneous (one solid constituent) porous media are:

Ku = Kd +
α2

(α − φ)/Km + φ/Kf
=

Kd

1 − αB
(17)

and

µu = µd. (18)
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Here, Ku and µu are the undrained (trapped pore fluid)
constants, while Kd and µd are the drained (untrapped
pore fluid) constants. Porosity (void volume fraction) is
φ. Grain bulk and shear moduli of the sole mineral con-
stituent are Km and µm. The bulk modulus of the pore
fluid is Kf . The factor α is the Biot-Willis [Biot and
Willis, 1957] or volume effective stress coefficient [Nur
and Byerlee, 1971; Berryman, 1992; Gurevich, 2004], re-
lated to Km and Kd within each layer by

α(n) = 1 − K
(n)
d /K(n)

m . (19)

The constant B in (17) is Skempton’s coefficient [Skemp-
ton, 1954].

Although our presentation is based on quasi-static re-
sults, our ultimate interest is often applications to seismic
wave propagation. In such circumstances a slightly dif-
ferent terminology is used by some authors [Mavko and
Jizba, 1991]. In particular, for high frequency wave prop-
agation, fluid may be effectively trapped in the pores as
it is unable to equilibrate through pore-pressure diffusion
on the time scale of wave passage. In this case, the term
“unrelaxed” is sometimes used instead of “undrained.”
We will not make any further issue of this distinction
here and stick to the single term “undrained” for both
types of applications.

For a porous medium composed of only two constituent
porous media, each of which is microhomogeneous and
obeys Gassmann’s equations, the exact relation [Berry-
man and Milton, 1991] that determines the overall effec-
tive stress coefficient α∗ – assuming only that the con-
stituents are in welded contact (volume fractions and spa-
tial distribution of constituents do not directly affect the
result) – is:

α∗ − α(1)

α(2) − α(1)
=

K∗

d − K
(1)
d

K
(2)
d − K

(1)
d

. (20)

Here K∗

d is the overall drained bulk modulus of the com-
posite system, and the superscripts (1) and (2) are labels
referencing the two distinct components in the composite
porous medium. Effects of microstructure on α∗ arrive
through the presence of the term K∗

d .

V. FOUR SCENARIOS

We now consider four scenarios of progressively greater
complexity. For the first pair (A and B) we assume the
mineral Km and drained Kd bulk moduli of all layers are
uniform, and therefore that the effective stress coefficient
(α = 1−Kd/Km) is the same in each layer. Furthermore,
the overall volume effective stress coefficient is also the
same [a fact that follows from (20)]. Although specific in
many respects, this model still permits some flexibility
in the choice of pore fluids and their spatial distribution.
The other main freedom we have left is to assume that

each layer’s shear modulus is about as sensitive or per-
haps more sensitive than its bulk modulus to irregulari-
ties in the pore space. This situation holds true especially
for granular media (such as soils) as discussed by Makse
et al. [1999]. So, the shear modulus can vary significantly
from layer to layer, which will be important to our main
discussion. The second pair of scenarios (C and D) allow
the bulk modulus to vary in the layers, and again study
both uniform and and patchy pore-fluid saturation.

A. Constant Drained Bulk Modulus, Uniform

Fluid Saturation

For assumed constant isotropic drained bulk modulus,

we have K∗
d = K

(n)
d ≡ Kd for all N layers as well as the

overall medium, and when N = 2 we can prove easily
using (20) that α∗ = α(1) = α(2). When the fluid is uni-
form throughout the medium, the undrained bulk moduli

also satisfy K∗
u = K

(n)
u ≡ Ku, since Gassmann’s equation

depends only on constants that are uniform throughout
this model material. Now it has been shown previously
[Berryman, 2004b] that when the drained bulk modulus
is uniform, a general result for Gv

eff = Gr
eff is

Gv
d =

[

N
∑

n=1

fn

µn + 3Kd/4

]−1

− 3Kd/4, (21)

fn being the volume fraction of the layers. This result fol-
lows easily from the Backus averages presented in (2) and
the formula for Gv

eff in (6). In the presence of pore fluid
and since each layer is a Gassmann material, the shear
moduli of the individual porous layers do not change.
So, a second result of the same type is available for the
undrained uniaxial shear energy per unit volume Gv

eff in
this medium:

Gv
u =

[

N
∑

n=1

fn

µn + 3Ku/4

]−1

− 3Ku/4, (22)

fn again being the volume fraction of the layers.
Neither of these two shear contributions is the over-

all modulus. They are just specific contributions of the
uniaxial shear component (within each laminated grain)
as defined earlier. However, they can be substituted for
the term Gv

eff in the Peselnick-Meister-Watt bounds de-
fined by (15). Note that it is easy to show from the
forms of (21) and (22) that c44 ≤ Gv

d ≤ c66, and simi-
larly that c44 ≤ Gv

u ≤ c66. [Furthermore, since Kd ≤ Ku

and the functionals in (21) and (22) vary monotonically
with their arguments Kd and Ku, it is easy to see that
Gv

d ≤ Gv
u.] Thus, from (12) and (13), the best choices

for shear moduli of the comparison materials are always
G− = c44 and G+ = c66 for this particular model ma-
terial. So ζ± = (G±/6)(9K + 8G±)/(K + 2G±) in (15),
where K takes the values K = Kd for the drained case
and K = Ku for the undrained case. In both cases,
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KR = KV = K since the drained bulk modulus is uni-
form, so the form of the shear modulus bounds in (15)
also simplifies to

1

µ± + ζ±
=

1

5

[

1

Gv
eff + ζ±

+
2

c44 + ζ±
+

2

c66 + ζ±

]

.

(23)
We now have upper and lower bounds on the shear mod-
ulus in both drained and undrained circumstances by us-
ing the appropriate values of Gv

eff and ζ± for each case.
It is also possible to generate self-consistent estimates
[Berryman, 2004b] for these moduli directly from the
form of these bounds by instead making the substitutions
µ± → µ∗ and ζ± → ζ∗ ≡ (µ∗/6)(9K + 8µ∗)/(K + 2µ∗).
The results of all these formulas are illustrated in Figure
1.

Another important concept in these analyses will be
“the ratio of compliance differences” defined by

R ≡ 1/µ∗

d − 1/µ∗
u

1/K∗
d − 1/K∗

u

. (24)

This quantity has been defined and discussed previously
by Berryman et al. [2002b]. For porous media with el-
lipsoidal pores, we expect R to vary with the ellipsoidal
aspect ratio from R = 0 for spherical pores to R = 4

15 for
very flat and sparse (small total volume fraction) penny-
shaped cracks. For more complex microstructures having
high crack volume fractions, R can be either greater than
or less than 4

15 [Berryman et al., 2002b]. The ratio R in
(24) is most useful for determining the extent to which an
identity derived by Mavko and Jizba [1991] for very low
porosity media containing randomly oriented fractures is
either satisfied or violated by other types of porous me-
dia. For the case studied by Mavko and Jizba [1991],
R ≡ 4/15. However, it has been shown that for penny-
shaped cracks at finite porosities R can be either higher
or lower than 4/15, and furthermore that the factor R
tends to zero when the pores approach spherical shapes
(aspect ratio ' 1) [Goertz and Knight, 1998; Berryman
et al., 2002b]. So this ratio is a sensitive measure of
the dependence of µ∗

u on the fluid content of a porous
medium, and also to some extent on the microgeometry
of the pores.

Figure 1 shows that, for most choices of volume frac-
tions, the drained and undrained values of shear modulus
bounds do not overlap. Clearly, as the volume fractions
approach zero or unity, the system approaches a pure
Gassmann system; but, away from these limiting cases,
the results are both qualitatively and quantitatively dif-
ferent from Gassmann’s predictions. Graphically speak-
ing, it appears that the lower bound of the undrained
constant is always greater than the upper bound on the
drained constants, i.e., µ−

u > µ+
d . But, when this fig-

ure is magnified, we find there are small regions of vol-
ume fraction where this inequality is violated slightly.
So there is still little doubt that shear modulus is af-
fected by pore fluids in these systems, and for the middle
ranges of volume fraction there is no doubt. This result
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FIG. 1: Illustrating the shear modulus results for the random
polycrystals of porous laminates model for homogeneous sat-
uration when each grain is composed of two constituents: (1)

K
(1)
d

= 35.0 GPa, µ
(1)
d

= 4.0 GPa and (2) K
(2)
d

= 35.0 GPa,

µ
(2)
d

= 40.0 GPa. Volume fraction of the layers varies from
0 to 100% of constituent number 2. Skempton’s coefficient is
taken to be B = 0.0 when the system is gas saturated, and
B = 1.0 when the system is fully liquid saturated. The effec-
tive stress coefficients for the layers are both α = 0.75, and
α∗ = 0.75 also. The computed undrained bulk modulus is
Ku = 140 GPa.

is a clear indication that Gassmann’s results for shear are
not generally valid for this model – as expected. Figure
2 shows that the maximum value of R for this case oc-
curs around f2 ' 0.2. Furthermore, the magnitude of
this value is about 0.32, and therefore greater than 4/15.
This shows again (as was shown previously by Berryman
et al. [2002b]) that R = 4/15 is also not in general an
upper bound on R.

B. Constant Drained Bulk Modulus, Patchy Fluid

Saturation

To add one level of complication, consider next the
same porous framework as before, but now suppose that
the saturation is patchy [White, 1975; Berryman et al.,
1988; Norris, 1993; Mavko and Mukerji, 1998; Dvorkin et
al., 1999; Johnson, 2001; Berryman et al., 2002a] rather
than homogeneous. The idea is that some of the layers
in the grains will have a liquid saturant having Kf = Kl,
while others will have a gas saturant having Kf = Kg.
In general we assume that Kg � Kl so that for most
purposes the gas saturated parts of the system satisfy
Ku ' Kd, i.e., undrained moduli are to a very good
approximation the same as the drained moduli for these
layers. If this were not so, then we could treat the second
saturant in exactly the same way as we will treat the
liquid saturant; but there would be no new ideas required
to do this, so we will not stress this approach here.

For this system, the drained constants are all the same
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FIG. 2: Plot of the ratio R from equation (24), being the
ratio of compliance differences due to fluid saturation. These
results are for the same model described in Figure 1 for ho-
mogeneous saturation. The values of R should be compared
to those predicted by Mavko and Jizba [1991] for very low
porosity and flat cracks, when R = 4/15 ' 0.267. We find
in contrast that the random polycrystals of porous laminates
model for the case considered always has R ≤ 0.32.

as in the preceding example. In particular, the overall
volume effective stress coefficient α∗ is the same.

The undrained constants differ for this system however
because now the undrained bulk modulus is not constant
in the layers. Gassmann’s formula does not provide an
answer for this overall bulk modulus because the system
is not homogeneous. But Backus averaging determines
all the elastic constants in a straightforward way for this
system (see Berryman [2004a]). The correct results are
obtained for all the constants related to Voigt and Reuss
averages [Eqs. (4)-(9) for both bulk and shear moduli]
as long as the K’s shown explicitly in (2) are properly
interpreted as the undrained constants Ku from (17) for
the fluids having bulk moduli Kl or Kg in the appropriate
layers.

One explicit result found useful to quote from some
earlier work [Berryman, 2004a] is

Gv
eff = c66 − 4cu

33

3

[ 〈

∆µ2

Ku+4µ/3

〉〈

1
Ku+4µ/3

〉

−
〈

∆µ
Ku+4µ/3

〉2 ]

,
(25)

where cu
33 = 〈1/(Ku + 4µ/3)〉−1

and the bracket notation
has the same meaning as in the Backus formulas (2). The
difference ∆µ ≡ µ−c66 is the deviation of the layer shear
modulus locally from the overall average across all the
layers. The term in square brackets in (25) is always non-
negative. If Ku in the layers ranges (parametrically) from
zero to infinity, the corrections from the square bracket

term times the factor
4cu

33

3 can be shown to decrease from
c66 − c44 to zero. Thus, Gv

eff in the layered model ranges
for all possible layered poroelastic systems from c44 to
c66.
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FIG. 3: Illustrating the bulk modulus results for the ran-
dom polycrystals of porous laminates model for patchy satu-
ration when each grain is composed of two constituents: (1)

K
(1)
d

= 35.0 GPa, µ
(1)
d

= 4.0 GPa and (2) K
(2)
d

= 35.0 GPa,

µ
(2)
d

= 40.0 GPa. Volume fraction of the layers varies from
0 to 100% of constituent number 2. Skempton’s coefficient is
taken to be B = 0.0 for constituent 1 (gas saturated), and
B = 1.0 for constituent 2 (liquid saturated). The effective
stress coefficients for the layers are both given by α = 0.75,
so α∗ = 0.75 also. Porosity does not play a direct role in the
calculation when we are using B as the fluid substitution pa-
rameter. To emphasize the tightness of the polycrystal (corre-
lated) bounds, uncorrelated Hashin-Shtrikman bounds K±

HS

on the undrained bulk modulus are also shown.

Figure 3 shows that the drained bulk modulus does not
change with volume fraction, since all the layers have
the same drained bulk modulus. The undrained bulk
modulus can have some small variations, however, due
to variations in the shear modulus, as is shown by the
small spread in the bulk modulus bounds. Uncorrelated
Hashin-Shtrikman bounds [computed by evaluating (3)
at µ’s having the lowest and highest shear modulus values
among all those in the layers] are also shown here for com-
parison purposes. Clearly, the Peselnick-Meister-Watt
correlated bounds based on the polycrystals of laminates
microstructure are much tighter. Figure 4 shows that the
overall shear modulus has only relatively weak depen-
dence (though stronger than that in Figure 3) on patchy
saturation when the bulk modulus itself is uniform. Fig-
ure 5 shows that shear modulus changes with saturation,
while small, are present and not very tightly coupled to
the bulk modulus changes (drained to undrained). This
observation is seen to be especially significant at the low-
est volume fractions of liquid, as the changes in shear
compliance are greater here (by a factor of about 3) than
the corresponding changes in the bulk compliance.
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FIG. 4: Illustrating the shear modulus results for the random
polycrystals of porous laminates model. Model parameters
are the same as in Figure 3 for patchy saturation.

C. Two Distinct Gassmann Materials, Uniform

Fluid Saturation

This example and the next one will remove the re-
striction that the porous frame material is uniform. To
have as much control as possible, we limit the heterogene-

ity to just two types of drained bulk moduli, K
(1)
d and

K
(2)
d . These occur with a frequency measured by the

volume fractions f1 and f2, respectively. These porous
materials fill the space, so f1 + f2 = 1. The effective
stress coefficient is known exactly for this model and is
given by (20). This result is true both for homogeneously
saturated two-component media [Berryman and Milton,
1991] as treated in this example, or for the type of patchy
saturation treated in the next example. Proof of this
statement is provided in Appendix A. For Gassmann’s
equations in each material, we also need either the fluid
bulk modulus together with the layer porosities φ(1) and
φ(2), or we just need the Skempton coefficient, B. For
simplicity, we take B = 0.0 for uniform gas saturation,
and B = 1.0 for uniform liquid saturation. (Although
B = 1 may not be exactly correct for real liquid-saturated
reservoirs, only the product αB — called the “poroelastic
coupling parameter” by Zimmerman [2000] — is impor-
tant for the modeling examples that follow. So desired
differences in B can be introduced through differences in
α. In this way we hope to capture the essence of this
problem using the minimum number of free parameters.)

The self-consistent estimates for bulk modulus are
found from the bounds (10) by taking K± → K∗,
µ± → µ∗, and therefore ζ± → ζ∗. The resulting formula
is

K∗ = KV
(Gr

eff + ζ∗)

(Gv
eff + ζ∗)

. (26)

The self-consistent formula for shear modulus requires a
bit more work. The reason for this is that the formula
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FIG. 5: Plot of the ratio R from equation (24), being the
ratio of compliance differences due to fluid saturation. These
results are for the same model described in Figure 3 for patchy
saturation. The values of R should be compared to those
predicted by Mavko and Jizba [1991] for very low porosity and
flat cracks, when R = 4/15 ' 0.267. We find in contrast that,
for partial and patchy saturation, R can take any positive
value, or zero.

given in (15) has already made use of a constraint that
is only true along the bounding curve defining the up-
per and lower bounds on shear modulus. Since the self-
consistent estimate lies off this curve, the more general
result must be employed. When this inappropriate con-
straint is replaced by the general formula and then (26) is
substituted, we find instead that the self-consistent for-
mula for shear modulus is given by

1

µ∗ + ζ∗
=

1

5

(

1 − α∗(KV − K∗)

Gv
eff + ζ∗

+
2

c44 + ζ∗
+

2

c66 + ζ∗

)

,

(27)
the main difference being that the denominator of the
first term on the right hand side is simpler than it is in
the bounds for shear modulus.

This completes the summary of the part of the model-
ing that is the same in this example and the next.

We will now assume that the fluid saturation is uniform
throughout the stated model material: (1l; 2l).

In Figure 6 there appear to be only two curves for
bulk modulus, but in fact six curves are plotted here. All
three of the drained curves are so close to each other that
they cannot be distinguished on the scale of this plot.
Similarly, all three of the undrained curves are equally
indistinguishable.

Figure 7 appears to be both qualitatively and quanti-
tatively very similar to Figure 1. But this time we find
the inequality µ−

u > µ+
d is never violated. So there is no

doubt that shear modulus is affected by pore fluids in
this system.

Figure 8 shows that the maximum value of R ' 0.2
occurs around f2 ' 0.3. For this case, 4/15 is an upper
bound on R, but we know this is not a general result.
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FIG. 6: Illustrating the bulk modulus results for the ran-
dom polycrystals of porous laminates model for homogeneous
saturation when each grain is composed of two constituents:

(1) K
(1)
d

= 20.0 GPa, µ
(1)
d

= 4.0 GPa and (2) K
(2)
d

= 50.0

GPa, µ
(2)
d

= 40.0 GPa. Volume fraction of the layers varies
from 0 to 100% of constituent number 2. Skempton’s coef-
ficient is taken to be B = 0.0 when the system is gas satu-
rated, and B = 1.0 when the system is fully liquid saturated.
The effective stress coefficients for the layers are, respectively,
α(1) = 0.85 and α(2) = 0.70. Porosity does not play a direct
role in the calculation when we are using B as the fluid sub-
stitution parameter.

D. Two Distinct Gassmann Materials, Patchy

Fluid Saturation

This final set of examples will use the same model
framework as the preceding example. However, two flu-
ids will be present simultaneously in this case. If the
two fluids (g, l) are assumed to saturate only one or the
other types of Gassmann materials, then we have a rel-
atively simple two component model: (1g; 2l). On the
other hand, the setup is now general enough to permit a
variety of other possibilities. For example, porous mate-
rial 1 might be saturated with either gas or liquid, and the
same for porous material 2: (1g, 1l; 2g, 2l). We could also
suppose that some of the layers have homogeneously (h)
mixed saturation of both liquid and gas, i.e., a partially
rather than patchy saturated layer: (1g, 1h, 1l; 2g, 2h, 2l).
Although this additional complication is not a problem
for the numerical modeling, the large increase in the
number of possible cases needing enumeration becomes a
bit too burdensome for the short presentation envisioned
here. (There are several infinities of ways these types of
materials having homogeneously mixed regions could be
incorporated.) So we will instead limit discussion to the
two cases mentioned before: (a) just two types of patchy
saturated layers (1g; 2l), or (b) four types of patchy satu-
rated layers (1g, 1l; 2g, 2l). Since the case (b) is expected
to be more complex but not expected to produce any new
ideas, we will limit the discussion further to case (a).

In Figure 9 as in Figure 6, the three drained curves
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FIG. 7: Illustrating the shear modulus results for the random
polycrystals of porous laminates model. Model parameters
are the same as in Figure 6 for homogeneous saturation.

for bulk modulus are so close together that they can-
not be distinguished on the scale of this plot (although
they can be distinguished if the plot is magnified). In
contrast to Figure 6, the three undrained bulk modu-
lus curves can now be distinguished, but they are still
quite close together. The undrained curves start out at
the same values as the drained curves because at zero
volume fraction of constituent 2 the only fluid in the sys-
tem is air. Then, as the volume fraction of constituent
2 increases, we add liquid up to the point where the fi-
nal values at full liquid saturation are the same as in
Figure 6. Again uncorrelated Hashin-Shtrikman bounds
are shown for purposes of comparison, as in Figure 3.
The Peselnick-Meister-Watt bounds on undrained bulk
modulus — making use of the laminated grain/crystal
substructure and the polycrystalline nature of the over-
all reservoir model — clearly are much tighter. Together
Figures 3 and 9 also show that the polycrystalline-based
bounding method produces a great improvement over
the uncorrelated Hashin-Shtrikman bounds, whose mi-
crostructural information is limited to volume fraction
data. This result is accomplished without having very
detailed knowledge of the spatial correlations, just by
using the fact that the local microstructure is layered.
Knowledge of local layering is therefore a very impor-
tant piece of microstructural information that has not
been used to greatest advantage in prior applications of
bounding methods for up-scaling purposes.

For Figure 10, the results are not so simple, as the six
curves are all very close to each other. Undrained curves
are always above the corresponding drained curves, but
in general there is little separation to be seen here. Figure
11, like Figure 5, shows that the shear modulus changes
with saturation are not really tightly coupled to the bulk
modulus changes, and especially so at the lowest volume
fractions of liquid, as the changes in shear compliance are
again greater in magnitude there than the changes in the
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FIG. 8: Plot of the ratio R from equation (24), being the
ratio of compliance differences due to fluid saturation. These
results are for the same model described in Figure 6 for ho-
mogeneous saturation. The values of R should be compared
to those predicted by Mavko and Jizba [1991] for very low
porosity and flat cracks, when R = 4/15 ' 0.267. We find
in contrast that the random polycrystals of porous laminates
model for the case considered always has R ≤ 0.20.

bulk compliance.

VI. CONCLUSIONS

The “random polycrystals of porous laminates” model
introduced and studied here has been shown to be a
useful tool for studying some very difficult technical is-
sues concerning how geomechanical constants of reser-
voirs behave as a function of changes of pore fluid and
varying degrees of heterogeneity. This model has the
advantage that rigorous bounds (the Hashin-Shtrikman
bounds of Peselnick and Meister [1965] and Watt and Pe-
selnick [1980]) on the geomechanical constants (bulk and
shear moduli) are available. Furthermore, due to the re-
fined formulation of these bounds presented here, it is
also possible to obtain self-consistent estimates directly
from these bounds [Berryman, 2004b; 2005]. This sit-
uation is particularly beneficial as the rigorous bounds
then provide immediate theoretical error bars for the
self-consistent estimates – a situation that is sometimes
but not always true for other effective medium theories
[Berryman, 1995]. The model should therefore prove use-
ful for a range of applications in geomechanics.

The results obtained for the specific application consid-
ered here, i.e., pore fluid effects on shear modulus, show
that the pore fluid interaction with overall shear behavior
is complicated. The changes from drained to undrained
behavior for shear modulus can range from being a neg-
ligible effect (as it is according to Gassmann’s results for
microhomogeneous and isotropic media) to being a big-
ger effect than the changes in bulk modulus under some
circumstances (see Figures 5 and 11 showing that the
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FIG. 9: Illustrating the bulk modulus results for the ran-
dom polycrystals of porous laminates model for patchy satu-
ration when each grain is composed of two constituents: (1)

K
(1)
d

= 20.0 GPa, µ
(1)
d

= 4.0 GPa and (2) K
(2)
d

= 50.0 GPa,

µ
(2)
d

= 40.0 GPa. Volume fraction of the layers varies from
0 to 100% of constituent number 2. Skempton’s coefficient is
taken to be B = 0.0 for constituent 1 (gas saturated), and
B = 1.0 for constituent 2 (liquid saturated). The effective

stress coefficients for the layers are, respectively, α(1) = 0.85
and α(2) = 0.70. Porosity does not play a direct role in the
calculation when we are using B as the fluid substitution pa-
rameter. To emphasize the accuracy of the polycrystal bounds
and self-consistent estimates, uncorrelated Hashin-Shtrikman
bounds K±

HS
on undrained bulk modulus are also shown.

ratio of compliance differences R > 1 in some cases).
Influences of pore geometry can also be studied in this
model if desired, but this complication was avoided here
by parameterizing the fluid effects through the use of
Skempton’s coefficient B. All the pore microgeometry
effects were thereby hidden in the present analysis, but
these could be brought out in future studies of the same
and/or many other related systems.

Another related result of some importance to analysis
of partially and patchy saturated systems was obtained in
Appendix B. The results are illustrated in Figure 12 and
show that deviations from a system satisfying Hill’s equa-
tion (3) need not be small if the shear modulus hetero-
geneity is large. The analysis does show, however, that if
shear modulus variation is small, then the observed devi-
ations from predictions of Hill’s equation should also be
correspondingly small.

An implicit assumption made throughout the present
paper is that the porosity and — most importantly —
the fluid permeability of the geomechanical system under
consideration is relatively uniform. Then, the pore fluid
pressures equilibrate on essentially the same timescale
throughout the whole system. If this were not true, as it
would not be in a double-porosity dual-permeability sys-
tem [Berryman and Wang, 1995], then the present analy-
sis would need to be modified to account for the presence
of more than one pertinent timescale. One direction for
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FIG. 10: Illustrating the shear modulus results for the random
polycrystals of porous laminates model. Model parameters
are the same as in Figure 9 for patchy saturation.

future work along these lines will therefore be focused
on this more complex, but nevertheless important, prob-
lem commonly encountered in real earth reservoirs. The
random polycrystal of porous laminates model is flexible
enough to allow this set of problems to be studied within
a very similar framework.
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APPENDIX A: EFFECTIVE STRESS

COEFFICIENT AND PARTIAL SATURATION

Although Eq. (20) for the overall volume effective
stress coefficient α∗ is known to be true for homogeneous
pore saturation, we also need to have a corresponding re-
sult here for patchy saturation. It turns out that the same
formula applies for arbitrarily patchy saturated media, as
long as there are only two types of solid components. To
show this, consider

(

δe(n)

−δζ(n)

)

=
1

K
(n)
d

(

1 −α(n)

−α(n) α(n)/B(n)

) ( −δpc

−δp
(n)
f

)

,

(28)
where δe(n) and δζ(n) are the change in overall strain
and the increment of fluid content in component n, where
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FIG. 11: Plot of the ratio R from equation (24), being the
ratio of compliance differences due to fluid saturation. These
results are for the same model described in Figure 9 for patchy
saturation. The values of R should be compared to those
predicted by Mavko and Jizba [1991] for very low porosity and
flat cracks, when R = 4/15 ' 0.267. We find in contrast that,
for partial and patchy saturation, R can take any positive
value, or zero. Note that the magnitude of this effect is smaller
than in Figure 5, even though the degree of heterogeneity for
bulk modulus is greater here.

n = 1, 2. (There are also similar formulas for all the over-
all properties with superscript (n) replaced by ∗ for the
corresponding effective properties. See Berryman and
Wang [1995] for more discussion.) Similarly, the change
in overall confining (external) pressure is δpc, and the

pore pressure change of component n is δp
(n)
f . The porous

material coefficients are defined as in the main text, K
(n)
d

is the drained bulk modulus, α(n) is the volume effective
stress coefficient, and B(n) is Skempton’s coefficient for
the n-th constituent.

Now the rest of the argument follows that given in
Berryman and Milton [1991] exactly, since it is not im-
portant what fluid is in the pores when trying to deter-
mine the overall effective stress coefficient at long times
(when fluid pressure in the system has equilibrated).
We simply postulate the existence of any fixed ratio

r = δp
(1)
f /δpc = δp

(2)
f /δpc such that δe(1) = δe(2). If

there is such a ratio (valid at appropriately long times),
then δe∗ = δe(1) = δe(2) also follows immediately and we
have the condition that must be satisfied:

δpc

K
(1)
d

[

1 − α(1)r
]

=
δpc

K
(2)
d

[

1 − α(2)r
]

, (29)

which is just a linear relation for ratio r. The result
shows that the postulated value of r does exist unless
the denominator of the following expression vanishes:

r =
1/K

(1)
d − 1/K

(2)
d

α(1)/K
(1)
d − α(2)/K

(2)
d

. (30)
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If the numerator of (30) vanishes, the results are trivial
because Gassmann’s microhomogeneity condition is then
satisfied. Once the value of r is known, it is easy to see
that δe∗ = δe(1) = δe(2) implies

δpc

K∗

d

[1 − α∗r] =
δpc

K
(1)
d

[

1 − α(1)r
]

. (31)

This equation can be rearranged into the form (20),
as has been shown previously by Berryman and Milton
[1991].

Arguments similar to the one just given have also been
used, for example, in the context of thermal expansion
by Benveniste and Dvorak [1990] and Dvorak and Ben-
veniste [1997], who call this approach “the theory of uni-
form fields.” It turns out this method is not restricted to
isotropic constituents as one might infer incorrectly from
the arguments presented here and also in Berryman and
Milton [1991].

A somewhat more difficult task than the one just ac-
complished involves deducing the overall effective pore
bulk modulus K∗

φ as was also done previously in Berry-

man and Milton [1991] However, this coefficient does not
play any direct role in our present analysis, so we will
leave this exercise to the interested reader.

APPENDIX B: HILL’S EQUATION AND

HETEROGENEOUS POROUS MEDIA

One very common approximation made in studies of
partially and patchy saturated porous media [Norris,
1993; Mavko et al., 1998; Johnson, 2001] is based on
an assumption that the estimates are being made over
a small enough region that it is reasonable to take the
shear modulus of the porous frame as constant, even
though the bulk modulus over the same small region may
vary. Then, when Gassmann’s results apply locally, the
shear modulus satisfies µd = µu, and so remains constant
throughout this same region regardless of the distribu-
tion of fluids in the pores. When these assumptions are
valid, Hill’s equation (3) may be used to compute the
effective bulk modulus K∗, regardless of anisotropy or of
how many constituents might be present. Furthermore,
Hill’s equation will apply equally to the drained K∗

d and
undrained K∗

u bulk moduli of such a poroelastic system;
Kn for the layers must be substituted accordingly for the
drained and undrained cases.

This approximation based on Hill’s equation is very ap-
pealing for applications because of its analytical beauty
and overall simplicity, but its use in heterogeneous media
has never been given a rigorous justification. In particu-
lar, the assumption of variable bulk modulus in a hetero-
geneous system having constant shear modulus is surely
one worthy of careful consideration. It seems more likely
(at least to this author) that the variations in the bulk
modulus in an earth system will be mimicked by the shear
modulus and, therefore, that the proposed method is in
truth an oversimplification of this complex problem.

The model system presented here (i.e., the random
polycrystal of porous laminates) offers one means of
checking whether this use of Hill’s equation might be jus-
tified or not.

It turns out that, when N = 2, Hill’s equation (3) can
be inverted to give µ as a functional of K∗ [Milton and
Berryman, 1997]. The result is given by

µ =
3K1K2

4Kr

(

K∗ − Kr

Kv − K∗

)

, (32)

where

Kv =

2
∑

n=1

fnKn and Kr =

[

2
∑

n=1

fn

Kn

]−1

. (33)

So we can do two calculations based on the results pre-
sented here for heterogeneous systems. We can compute
effective shear moduli µeff

d and µeff
u by taking the self-

consistent values to be the true values of the drained
and undrained K∗, and layer values of K

(n)
d and K

(n)
u

as the values for K1 and K2. The volume fractions are
those already used in these calculations. So everything
is known and the computations are straightforward. We
want to check whether the resulting values of effective
shear moduli µeff

d and µeff
u computed this way are ap-

proximately constant and/or approximately equal to each
other. If they are, then Hill’s equation, although not rig-
orously appropriate in these systems, nevertheless could
be capturing some of the observed behavior. If this is not
true, then the results would be showing us that great care
should be exercised in using these formulas for analyzing
real data.

Our results are illustrated in Figure 12. We find that
µeff

d ' µeff
u . However, except for the volume fractions near

50%, the values of both µeff ’s are very different from the
actual shear moduli of the random polycrystals of porous
laminates model. The µeff ’s are high when the µ∗’s are
low, and vice versa. This observation is a very strong
negative result, showing that large errors in analysis can
be introduced for systems such as these that are very
heterogeneous in shear.

On the positive side, it is also clear from Figure 12
that if the spread of layer µ’s is nonzero but small, then
the use of Hill’s equation can be well justified. The error
in shear estimates will never be greater than the spread
in the layer shear modulus values, so if this is a small
(though nonzero) number, then the errors will also be
correspondingly small.
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